home** mail software schede storie lezioni testi didattici programmazioni
giochi ** sw in inglese tabelline il problema ordina CD testi teorici i programmi
maestri per i bambini riconoscimenti scuola e pc links segnalazioni indice CD

I programmi della Scuola Elementare

D.P.R. 12 febbraio 1985, n 104

Indicazioni nazionali per i Piani di Studio Personalizzati nella Scuola Primaria

(Bertagna- Moratti) novembre 2002

a) PROBLEMI

Il pensiero matematico è caratterizzato dall'attività di risoluzione di problemi e ciò è in sintonia con la propensione del fanciullo a porre domande e a cercare risposte. Di conseguenza le nozioni matematiche di base vanno fondate e costruite partendo da situazioni problematiche concrete, che scaturiscono da esperienze reali del fanciullo e che offrano anche l'opportunità di accertare quali apprendimenti matematici egli ha in precedenza realizzato, quali strumenti e quali strategie risolutive utilizza e quali sono le difficoltà che incontra.
Occorre evitare, peraltro, di procedere in modo episodico e non ordinato e tendere invece ad una progressiva organizzazione delle conoscenze.

   
Obiettivi: (PROBLEMI)
  • Tradurre problemi elementari espressi con parole in rappresentazioni matematiche, scegliendo le operazioni adatte; quindi trovare le soluzioni e interpretare correttamente i risultati; inversamente, attribuire un significato a rappresentazioni matematiche date;
  • individuare situazioni problematiche in ambiti di esperienza di studio e formularne e giustificarne ipotesi di risoluzione con l'uso di appropriati strumenti matematici, sia aritmetici sia di altro tipo;
  • risolvere problemi aventi procedimento e soluzione unici e problemi che offrono possibilità di risposte diverse, ma ugualmente accettabili;

individuare la carenza di dati essenziali per la risoluzione di problemi ed eventualmente integrarli; riconoscere in un problema la presenza di dati sovrabbondanti, oppure contraddittori con conseguente impossibilità di risolverlo.

   
     
   (Bertagna- Moratti)  
Obiettivi del primo e secondo anno:
  • Contare, sia in senso progressivo che regressivo, collegando correttamente la sequenza numerica verbale con l'attività manipolativa e percettiva;
  • confrontare raggruppamenti di oggetti rispetto alla loro quantità e indicare se essi hanno lo stesso numero di elementi, oppure di più o di meno;
  • leggere e scrivere i numeri naturali almeno entro il cento, esprimendoli sia in cifre che a parole; confrontarli e ordinarli, anche usando i simboli =, <, >; inoltre disporli sulla linea dei numeri in modo corretto;
  • eseguire con precisione e rapidità semplici calcoli mentali di addizioni e sottrazioni;
  • raggruppare oggetti a due a due contando per due, raggrupparli a tre a tre contando per tre, e così via;
  • con l'aiuto di quantità adeguate di oggetti calcolare, in collegamento reciproco, il doppio/la metà, il triplo/il terzo, il quadruplo/il quarto, ecc.;
  • eseguire, almeno entro il cento, addizioni e sottrazioni, moltiplicazioni e divisioni (con moltiplicatori e divisori di una cifra) anche con l'ausilio di opportune concretizzazioni e razionalizzazioni.
Classe prima

Il numero

  • I numeri naturali nei loro aspetti ordinali e cardinali.
  • Concetto di maggiore, minore, uguale.
  • Operazioni di addizione e di sottrazione fra numeri naturali.

Geometria

  • Collocazione di oggetti in un ambiente, avendo come riferimento se stessi, persone, oggetti.
  • Osservazione ed analisi delle caratteristiche (proprietà) di oggetti piani o solidi.
  • Mappe, piantine, orientamento.
  • Caselle ed incroci sul piano quadrettato.

La misura

  •  
  • Riconoscimento di attributi di oggetti (grandezze) misurabili (lunghezza, superficie, …).
  • Confronto diretto e indiretto di grandezze.
  • Lessico delle unità di misura più comuni.

Introduzione al pensiero razionale

  • Classificazione e confronto di oggetti diversi tra loro.

Dati e previsioni

Rappresentazioni iconiche o grafiche di semplici dati, ordinate per modalità.

  • Usare il numero per contare, confrontare e ordinare raggruppamenti di oggetti.
  •  
  • Contare sia in senso progressivo che regressivo.
  •  
  • Esplorare, rappresentare (con disegni, parole, simboli) e risolvere situazioni problematiche utilizzando addizioni e sottrazioni.
  •  
  • Leggere e scrivere numeri naturali sia in cifre, sia in parole.
  •  
  • Comprendere le relazioni tra operazioni di addizione e sottrazione.
  • Localizzare oggetti nello spazio, sia rispetto a se stessi, sia rispetto ad altre persone o oggetti, usando termini adeguati(sopra/sotto, davanti/dietro, dentro/fuori).
  • Eseguire un semplice percorso partendo dalla descrizione verbale o dal disegno e viceversa.
  • Ritrovare un luogo attraverso una semplice mappa.
  • Individuare la posizione di caselle o incroci sul piano quadrettato.
  • Osservare oggetti e fenomeni, individuare grandezze misurabili.
  • Compiere confronti diretti di grandezze.
  • Effettuare misure per conteggio (per esempio di passi, monete, quadretti, ...), con oggetti e strumenti elementari (ad esempio la bottiglia, la tazza, ecc...).
  • Associare alle grandezze corrispondenti le unità di misura già note dal contesto extrascolastico.
  • In situazioni concrete classificare oggetti fisici e simbolici (figure, numeri,…) in base ad una data proprietà.
  • Raccogliere dati e informazioni e saperli organizzare con rappresentazioni iconiche ordinate per modalità (pittogrammi).
   (Bertagna- Moratti)  (Bertagna- Moratti)
Obiettivi del terzo, quarto e quinto anno:
  • Leggere i numeri, naturali e decimali, espressi sia in cifre sia a parole, traducendoli nelle corrispondenti somme di migliaia, centinaia, decine, unità, decimi, centesimi, ecc.;
  • scrivere sia in cifre sia a parole, anche sotto dettatura, i numeri naturali e decimali, comprendendo il valore posizionale delle cifre, il significato e l'uso dello zero e della virgola;
  • confrontare e ordinare i numeri naturali e decimali, utilizzando opportunamente la linea dei numeri (ad esempio, mediante sottograduazioni);
  • scrivere una successione di numeri naturali partendo da una regola data; viceversa, scoprire una regola che generi una data successione;
  • intuire e saper usare la proprietà commutativa e associativa nella addizione e nella moltiplicazione, la proprietà distributiva del prodotto rispetto alla somma, la proprietà invariantiva nella sottrazione e nella divisione, anche per agevolare i calcoli mentali utilizzando opportune strategie e approssimazioni;
  • eseguire per iscritto le quattro operazioni aritmetiche con i numeri naturali e decimali, comprendendo il significato dei procedimenti di calcolo;
  • moltiplicare e dividere numeri naturali e decimali per dieci, cento e mille, comprendendo il significato di queste operazioni;
  • calcolare, in relazione reciproca, multipli e divisori di numeri naturali, e riconoscere i numeri primi;
  • trovare le frazioni che rappresentano parti di adatte figure geometriche, di insiemi di oggetti o di numeri; viceversa, data una frazione trovare in opportune figure geometriche, in insiemi di oggetti o in numeri la parte corrispondente, con particolare attenzione alle suddivisioni decimali;
  • confrontare e ordinare le frazioni più semplici, utilizzando opportunamente la linea dei numeri (ad esempio, con graduazioni successive);
  • confrontare e ordinare sulla linea dei numeri gli interi relativi, facendo riferimento, se necessario, a esperienze personali (ad esempio, l'uso del termometro);

rispettare l'ordine di esecuzione di una serie di operazioni (espressioni), interpretando il significato della punteggiatura e comprendendo l'ordine stesso; viceversa, costruire una espressione usando l'adeguata punteggiatura per il rispetto dell'ordine di esecuzione.

Classi seconda e terza

Il numero

  • Rappresentazione dei numeri naturali in base dieci.
  • Moltiplicazione e divisione tra numeri naturali.
  • Significato del numero zero e del numero uno. Il valore posizionale delle cifre.
  • Algoritmi delle quattro operazioni.
  • Sviluppo del calcolo mentale.
  • Ordine di grandezza.

Geometria

  •  
  • I principali enti geometrici (rette, piani, …).
  •  
  • Le principali figure geometriche del piano e dello spazio.
  •  
  • Rette incidenti, parallele, perpendicolari.
  •  
  • Simmetrie di una figura piana.
  • Introduzione intuitiva del concetto di perimetro e area di figure piane e del concetto di volume di figure solide.
  • Concetto di scomponibilità di figure poligonali.
  • Introduzione del concetto di angolo a partire da contesti concreti.

La Misura

  •  
  • Sistema di misura.
  •  
  • Convenzionalità della misura.

Introduzione al pensiero razionale

  • Linguaggio: le terminologie relative a numeri, figure e relazioni.
  • Analisi di analogie e differenze in contesti diversi.

Dati e previsioni

  •  
  • Popolazione (o collettivo) statistico.
  • Unità statistica.
  • Carattere.
  • Modalità qualitative e quantitative.
  • Tabelle di frequenze.
  • Rappresentazioni grafiche (diagrammi a barre, aerogrammi rettangolari, …).
  • Moda.
  • Situazioni certe o incerte.
  •  
  • Qualificazione delle situazioni incerte.
Classi seconda e terza
  • Riconoscere nella scrittura in base 10 dei numeri, il valore posizionale delle cifre.
  • Esplorare, rappresentare e risolvere situazioni problematiche utilizzando la moltiplicazione e la divisione.
  • Verbalizzare le operazioni compiute e usare i simboli dell’aritmetica per rappresentarle.
  • Acquisire e memorizzare le tabelline.
  • Eseguire moltiplicazioni e divisioni tra numeri naturali con metodi e strumenti diversi (calcolo mentale, carta e penna, …).
  • Utilizzare tecniche diverse per eseguire moltiplicazioni e divisioni ( moltiplicazione a gelosia o araba, moltiplicazione a crocetta, divisione canadese, …).
  • Riflettere sul risultato di una delle quattro operazioni quando un termine sia lo zero.
  • Ipotizzare l’ordine di grandezza del risultato di una delle quattro operazioni tra numeri naturali.
  • Costruire, disegnare, denominare e descrivere alcune fondamentali figure geometriche del piano e dello spazio.
  • Descrivere gli elementi significativi di una figura ed identificare, se possibile, gli eventuali elementi di simmetria.
  • Identificare il perimetro e l’area di una figura assegnata.
  • Rappresentare figure tramite modelli materiali o il disegno.
  • Individuare gli angoli in figure e contesti diversi.
  • Effettuare misure dirette ed indirette di grandezze(lunghezze, tempi, …) ed esprimerle secondo unità di misure convenzionali.
  • Scegliere, costruire ed utilizzare strumenti adeguati per effettuare misurazioni.
  • Esprimere misure utilizzando multipli e sottomultipli delle unità di misura.
  • Risolvere semplici problemi di calcolo con le misure (scelta delle grandezze da misurare, unità di misura, strategie operative).
  • Raccontare con parole appropriate (ancorché non specifiche) le esperienze fatte in diversi contesti, i percorsi di soluzione, le riflessioni e le conclusioni.
  • Acquisire la consapevolezza della diversità di significato tra termini usati nel linguaggio comune e quelli del linguaggio specifico.
  • In contesti vari individuare, descrivere e costruire relazioni significative, riconoscere analogie e differenze.
  • Porsi delle domande su qualche situazione concreta (preferenze, età di un gruppo di persone, professioni, sport praticati, …).
  • Individuare a chi richiedere le informazioni per poter rispondere a tali domande.
  • Raccogliere dati relativi ad un certo carattere.
  • Classificare tali dati secondo adatte modalità.
  • Rappresentare i dati in tabelle di frequenza o mediante rappresentazioni grafiche adeguate alla tipologia del carattere indagato.
  • Individuare la moda in una serie di dati rappresentati in tabella o grafico.
  • Riconoscere, in base alle informazioni in proprio possesso, se una situazione è certa o incerta.

Qualificare, in base alle informazioni possedute, l’incertezza (è molto probabile, è poco probabile, …)

 

Classi quarta e quinta

MATEMATICA

Classi quarta e quinta

MATEMATICA

  Il numero
  •  
  • Relazioni tra numeri naturali; consolidamento delle quattro operazioni e dei relativi algoritmi di calcolo.
  • Introduzione in contesti concreti dei numeri interi relativi (positivi, nulli, negativi).
  • Ordinamento dei numeri interi relativi sulla retta numerica.
  • Introduzione dei numeri decimali
  • Nozione intuitiva e legata a contesti concreti della frazione e loro rappresentazione simbolica.
  • Scritture diverse dello stesso numero (frazione, frazione decimale, numero decimale).
  • Ordine di grandezza ed approssimazione.

Geometria

  •  
  • Introduzione e consolidamento, in maniera operativa, del concetto di angolo.
  •  
  • Analisi degli elementi significativi (lati, angoli, …) delle principali figure geometriche piane.
  •  
  • Denominazione di triangoli e quadrangoli con riferimento alle simmetrie presenti nelle figure, alla lunghezza dei lati e all’ampiezza degli angoli.
  •  
  • Concetto di isoperimetria e di equiestensione in contesti concreti.
  •  
  • Riconoscimento di simmetrie, rotazioni, traslazioni.

La Misura

Identificare vari e diversi attributi misurabili di oggetti ed associarvi processi di misurazione, sistemi ed unità di misura.

Introduzione al pensiero razionale

  • Lessico ed espressioni matematiche relative a numeri, figure, dati, relazioni, simboli, ecc.
  • Relazioni tra oggetti (classificare oggetti, figure, numeri, in base ad una/due o più proprietà date e viceversa, ordinare elementi in base ad una determinata caratteristica, riconoscere ordinamenti assegnati) e le loro rappresentazioni.

Dati e previsioni

  • Analisi e confronto di raccolte di dati mediante gli indici Moda, Mediana, Media aritmetica, Intervallo di variazione.
  • Ricerca di informazioni desunte da statistiche ufficiali (ISTAT, Provincia, Comune, …).
  • Qualificazione e prima quantificazione delle situazioni incerte.

Aspetti storici connessi alla matematica.

  • Origine e diffusione dei numeri indo-arabi, sistemi di scrittura non posizionali, le cifre romane
  • Questioni statistiche del passato (es. tavole statistiche di natalità, mortalità, battesimi, epidemie, …)
Riconoscere e costruire relazioni tra numeri naturali ( multipli, divisori, numeri primi, …)
  • Leggere e scrivere numeri naturali e decimali consolidando la consapevolezza del valore posizionale delle cifre.
  • Confrontare e ordinare numeri decimali e operare con essi.
  • Rappresentare i numeri sulla retta.
  • Confrontare e ordinare le frazioni più semplici, utilizzando opportunamente la linea dei numeri.
  • Eseguire le quattro operazioni anche con numeri decimali con consapevolezza del concetto e padronanza degli algoritmi.
  • Avviare procedure e strategie di calcolo mentale, utilizzando le proprietà delle operazioni.
  • Effettuare consapevolmente calcoli approssimativi.
  • Fare previsioni sui risultati di calcoli eseguiti con mini calcolatrici.
  • Confrontare l’ordine di grandezza dei termini di un’operazione tra numeri decimali ed il relativo risultato.
  • Usare, in contesti concreti, il concetto di angolo.
  • Esplorare modelli di figure geometriche; costruire disegnare le principali figure geometriche esplorate.
  • Partendo da osservazioni materiali, riconoscere significative proprietà di alcune figure geometriche (es. figure isoperimetriche o equiestese)
  • Individuare simmetrie in oggetti o figure date, evidenziandone le caratteristiche; rappresentarle con il disegno.
  • Riconoscere figure simmetriche, ruotate o traslate di figure assegnate.
  • Operare concretamente con le figure effettuando trasformazioni assegnate.
  • Misurare lunghezze.
  • Determinare perimetri, aree e volumi delle figure geometriche conosciute in casi semplici.
  • Comprendere la "convenienza" ad utilizzare unità di misura convenzionali e familiarizzare con il sistema metrico decimale.
  • In contesti significativi attuare semplici conversioni (equivalenze) tra un’unità di misura e un’altra (tra cm. e metri, tra grammi e Kg, …)
  • Comprendere che le misure sono delle modellizzazioni approssimate e intuire come la scelta dell’unità di misura e dello strumento usato influiscano sulla precisione della misura stessa.
  • Ipotizzare quale unità di misura sia più adatta per misurare realtà diverse (la distanza Roma –NewYork, la circonferenza di un anello, la superficie di un campo da calcio, …).
    • Utilizzare in modo consapevole termini della matematica.
    • Verificare, attraverso esempi, una congettura formulata.
    • Classificare oggetti, figure, numeri realizzando adeguate rappresentazioni.
    • In contesti diversi individuare, descrivere e costruire relazioni significative: analogie, differenze, regolarità.
    • Verificare, attraverso esempi, un’ipotesi formulata.
    • Partendo dall’analisi del testo di un problema, individuare le informazioni necessarie per raggiungere un obiettivo, organizzare un percorso di soluzione e realizzarlo.
    • Riflettere sul procedimento risolutivo seguito e confrontarlo con altre possibili soluzioni
    • Consolidare le capacità di raccolta dei dati e distinguere il carattere qualitativo da quello quantitativo
    • Comprendere come la rappresentazione grafica e l’elaborazione dei dati dipenda dal tipo di carattere.
    • Comprendere la necessità o l’utilità dell’approssimazione dei dati raccolti per diminuire il numero di modalità sotto osservazione.
    • Qualificare, giustificando, situazioni incerte.

    Quantificare, in semplici contesti, utilizzando le informazioni possedute, in particolare l’eventuale simmetria degli esiti (equiprobabilità) e la frequenza relativa di situazioni similari.

  • c) GEOMETRIA E MISURA

    La geometria va vista inizialmente come graduale acquisizione delle capacità di orientamento, di riconoscimento e di localizzazione di oggetti e di forme e, in generale, di progressiva organizzazione dello spazio, anche attraverso l'introduzione di opportuni sistemi di riferimento.
    L'itinerario geometrico elementare, tenendo alla sistemazione delle esperienze spaziali del fanciullo, si svilupperà attraverso la progressiva introduzione di rappresentazioni schematiche degli aspetti della realtà fisica; dallo studio e dalla realizzazione di modelli e disegni si perverrà alla conoscenza delle principali figure geometriche piane e solide e delle loro trasformazioni elementari. Si porrà particolare attenzione ad una corretta acquisizione dei concetti fondamentali di lunghezza, area, volume, angolo, parallelismo, perpendicolarità.
    Consistente rilievo dovranno avere, altresì, l'introduzione delle grandezze e l'uso dei relativi procedimenti di misura, da far apprendere anch'essi in contesti esperienziali e problematici e in continuo collegamento con l'insegnamento delle scienze.

       
    Obiettivi del primo e secondo anno:
    • Localizzare oggetti nello spazio, prendendo come riferimento sia se stessi, sia altre persone e oggetti, e usare correttamente i termini: davanti/dietro, sopra/sotto, a destra/a sinistra, vicino/lontano, dentro/fuori;
    • effettuare spostamenti lungo percorsi che siano assegnati mediante istruzioni orali e scritte e descrivere - verbalmente o per iscritto percorsi eseguiti da altri, anche ricorrendo a rappresentazioni grafiche appropriate;
    • riconoscere negli oggetti dell'ambiente e denominare correttamente i più semplici tipi di figure geometriche, piane e solide;
    • individuare simmetrie in oggetti e figure date; realizzare e rappresentare graficamente simmetrie mediante piegature, ritagli, disegni, ecc.;

    confrontare e misurare lunghezze, estensioni, capacità, durate temporali, usando opportune unità, arbitrarie o convenzionali, e loro successive divisioni.

       
    Obiettivi del terzo, quarto e quinto anno:
    • Riconoscere in contesti diversi, denominare, disegnare e costruire le principali figure geometriche piane; costruire con tecniche e materiali diversi, alcune semplici figure geometriche solide e descriverne alcune caratteristiche, come, nel caso di poliedri, numero dei vertici, degli spigoli, delle facce;
    • riconoscere l'equiestensione di semplici figure piane mediante scomposizioni e ricomposizioni;
    • misurare e calcolare il perimetro e l'area delle principali figure piane, avendo consapevolezza della diversità concettuale esistente tra le due nozioni;
    • trovare il volume di oggetti anche irregolari con strategie e unità di misura diverse, avendo consapevolezza della diversità concettuale esistente tra la nozione di volume e quella di area della superficie di una figura solida;
    • individuare, in situazioni concrete, posizioni e spostamenti nel piano (punti, direzioni, distanze, angoli come rotazioni); rappresentare tali situazioni anche con l'uso di reticolati a coordinate intere positive, di mappe, di cartine, ecc.;
    • usare correttamente espressioni come: retta verticale, orizzontale, rette parallele, incidenti, perpendicolari; disegnare, con riga, squadra e compasso, rette parallele e perpendicolari, angoli e poligoni;
    • riconoscere eventuali simmetrie presenti in una figura piana e classificare triangoli e quadrangoli rispetto alle simmetrie stesse;
    • realizzare, anche con l'uso di materiale concreto e con disegni, la corrispondente di una figura geometrica piana sottoposta ad una traslazione, ad una simmetria assiale, ad una rotazione, ad un ingrandimento e impicciolimento in scala;
    • conoscere le principali unità internazionali e pratiche per la misura di lunghezze, aree, volumi/capacità, pesi; saperle usare correttamente per effettuare stime e misure;
    • scegliere, costruire e utilizzare strumenti adeguati per effettuare le misurazioni;
    • passare da una misura espressa in una data unità ad un'altra ad essa equivalente, limitatamente ai casi più comuni e con aderenza al linguaggio corrente anche in riferimento al sistema monetario;

    effettuare misure: di ampiezze angolari (in gradi), di durate (in ore, minuti primi e secondi); operare con tali unità in casi problematici reali.

       
    LOGICA

    L'educazione logica, più che oggetto di un insegnamento esplicito e formalizzato, deve essere argomento di riflessione e di cura continua dell'insegnante, a cui spetta il compito di favorire e stimolare lo sviluppo cognitivo del fanciullo, scoprendo tempestivamente eventuali difficoltà e carenze.
    Particolare cura sarà rivolta alla conquista della precisione e della completezza del linguaggio, tenendo conto che, soprattutto nei primi anni di scuola, il linguaggio naturale ha ricchezza espressiva e potenzialità logica adeguate alle necessità di apprendimento.
    L'insegnante proporrà fin dall'inizio, sul piano dell'esperienza e della manipolazione concreta, attività ricche di potenzialità logica, quali: classificazioni mediante attributi, inclusioni, seriazioni ecc. Con gradualità potrà introdurre qualche rappresentazione logico-insiemistica (si potranno usare i diagrammi di Eulero-Venn, i grafi, ecc.) che sarà impiegata per l'aritmetica, la geometria, per le scienze, per la lingua, ecc. Tuttavia terrà presente che la simbolizzazione formale di operazioni logico-insiemistiche non è necessaria, in via preliminare, per l'introduzione degli interi naturali e delle operazioni aritmetiche. Terrà, inoltre, presente che le più elementari questioni di tipo combinatorio forniscono un campo di problemi di forte valenza logica.

       
    Obiettivi del primo e secondo anno:
    • Classificare oggetti, figure, numeri ... in base ad un dato attribuito e, viceversa, indicare un attributo che spieghi la classificazione data;
    • in contesti problematici concreti e particolarmente semplici, individuare tutti i possibili casi di combinazioni di oggetti e di attributi;
    • scoprire e verbalizzare regolarità e ritmi in successioni date di oggetti, di immagini, di suoni e, viceversa, seguire regole - proposte oralmente o per iscritto - per costruire tali successioni;
    • rappresentare con schematizzazioni elementari (ad esempio, con frecce) successioni spazio-temporali, relazioni d'ordine, corrispondenze, riferite a situazioni concrete.
       
    Obiettivi del terzo, quarto e quinto anno:
    • Classificare oggetti secondo due o più attributi e realizzare adeguate rappresentazioni delle stesse classificazioni mediante diagrammi di Venn, di Carroll, ad albero, con tabelle, con schede a bordo perforato...;

    usare correttamente il linguaggio degli insiemi nelle operazioni di unione, di intersezione, di complemento, anche in relazione alla utilizzazione dei connettivi logici e con applicazioni alle classificazioni aritmetiche, geometriche, naturalistiche, grammaticali, ecc.

       
    Importanza educativa notevole va riconosciuta anche a concetti, principi e capacità connessi con la rappresentazione statistica di fatti, fenomeni e processi e con l'elaborazione di giudizi e di previsioni in condizioni di incertezza.
    L'introduzione dei primi elementi di probabilità, che può trovare posto alla fine del corso elementare, ha lo scopo di preparare nel fanciullo un terreno intuitivo su cui si possa, in una fase successiva, fondare l'analisi razionale delle situazioni di incertezza.
    La classica definizione di probabilità - come rapporto fra il numero dei casi favorevoli e il numero dei casi possibili in situazioni aleatorie simmetriche - non può essere assunta come punto di partenza, ma è piuttosto il punto di arrivo di una ben graduata attività.
    Nello sviluppo di questo itinerario può realizzarsi la costruzione e l'analisi di procedimenti e di algoritmi - numerici e non numerici - anche con l'uso iniziale, ma coerente e produttivo, di opportuni strumenti di calcolo e di elaborazione delle informazioni.
       
    Obiettivi del primo e del secondo anno:
    • In situazioni problematiche tratte dalla vita reale e dal gioco, usare in modo significativo e coerente le espressioni: forse, è possibile, è sicuro, non so, è impossibile, ecc.
       
    Obiettivi del terzo, quarto e quinto anno:
    • Compiere osservazioni e rilevamenti statistici semplici; tracciare diagrammi a barre, istogrammi, areogrammi...;
    • calcolare medie aritmetiche e percentuali, usando, se ritenuto opportuno, calcolatrici tascabili; viceversa, interpretare rappresentazioni e calcoli fatti da altri;
    • confrontare in situazioni di gioco le probabilità dei vari eventi mediante l'uso di rappresentazioni opportune;
    • rappresentare, elencare e numerare tutti i possibili casi in semplici situazioni combinatorie; dedurne alcune elementari valutazioni di probabilità;

    tracciare e interpretare diagrammi di flusso per la rappresentazione di convenienti processi.

       
      TECNOLOGIA TECNOLOGIA
      SECONDA E TERZA
    • Osservazione ed analisi diretta di campioni di materiali.
    • Costruzione di modelli.
    •  
    SECONDA E TERZA
    • Ricorrendo a schematizzazioni semplici ed essenziali, realizzare modelli di manufatti d’uso comune e individuare i materiali più idonei alla loro realizzazione.
    • Classificare i materiali in base alle caratteristiche di: pesantezza/leggerezza, resistenza, fragilità, durezza, elasticità, plasticità.
    • Realizzare modelli, ricorrendo a schematizzazioni semplici ed essenziali.
    • Individuare le funzioni degli strumenti adoperati dagli alunni per la costruzione dei modelli, classificandoli secondo le loro funzioni.
    • Scrivere piccoli e semplici brani utilizzando la videoscrittura (MS-Word).
    • Disegnare a colori adoperando il programma PAINT del sistema operativo Windows o altri semplici programmi di grafica.
    • Inserire nei testi le immagini realizzate.
       TECNOLOGIA  TECNOLOGIA
     
    •  QUARTA E QUINTA
    •  QUARTA E QUINTA
     
    • Significato elementare di Energia, le sue diverse forme e le macchine che le utilizzano.
    • Le principali vie di comunicazione utilizzate dall’uomo via terra, via acqua,via aria.
    • Individuare, classificare e rappresentare (con schizzi e modelli), per ognuna delle categorie sopra elencate, i mezzi di trasporto corrispondenti, indicando il tipo d’energia utilizzata.
    • Individuare, analizzare e riconoscere potenzialità e limiti dei mezzi di telecomunicazione.
    • Individuare, analizzare e riconoscere le macchine in grado di riprodurre testi, immagini e suoni.
    • Adoperare le procedure più elementari dei linguaggi di rappresentazione: grafico/iconico e modellistico tridimensionale.
    • Approfondire ed estendere l’uso della videoscrittura.
    • Introdurre il calcolo elementare adoperando il foglio elettronico (MS- Excel).

    Acquisire i primi rudimenti di utilizzazione di Internet